Aquaveo & Water Resources Engineering News

Adding Multiple Screens to Well Points

Do you have multiple screens to add to your MNW2 wells? Adding multiple well screens can be an important part of modeling what a well situation looks like in real life. But you might be frustrated trying to figure out how to get multiple screens on your well points. Today, we detail how to add multiple screens on MNW2 wells.

While wells with singular screens can be imported using the GMS import wizard, adding more than one screen to a well necessitates a different workflow.

To add multiple screens, add them one at a time to each well:

Example of setting multiple well screens
  1. Create a coverage with MNW2 wells enabled.
  2. Use your TXT or CSV file to add the well points to your coverage through the import wizard.
  3. Once the points are in GMS, right-click on that coverage and choose Attribute Table.
  4. Make sure that your Show dropdown is set to "all", so that each well point is visible.
  5. If needed, uncheck the checkbox in the Use screen column.
  6. In the column labeled Boreline, click on the ... to open up the z screen table for one of your points.
  7. In that table, you can list (or copy/paste) all of the well screen values applicable to that well point.
  8. Repeat steps 5–7 for each well.

Since adding multiple screens is a manual task, staying organized is an important part of it. Consider keeping track of which wells you have already added screens to. You could keep track in a spreadsheet or in a notes application of your choice. This is especially important with a large number of wells because it is not obvious in the Attribute Table which wells already have screens assigned to them.

Again, adding multiple screens is specifically for MNW2 wells. So, if you have multiple screens to add to your wells, then you might consider changing them to MNW2 wells. This would allow the wells to accommodate adding multiple screens.

If you have a project needing multiple well screens, use GMS today!

Blog tags: 

Rebuilding an SRH-2D Restart File

Have you ever needed to rebuild an SRH-2D restart file for a project you were working on? Perhaps you lost the restart file or maybe you made modifications to your mesh, so the restart file is no longer valid for the model you have. Regardless of the cause, rebuilding a restart file can be a vital step in completing the model you're working on.

To start rebuilding your restart file, see if you can do a dry run of your simulation:

Example of the SRH-2D Model Control Set to Use a Dry Run
  1. Right-click on the simulation in the Project Explorer and select Duplicate.
  2. This ensures that the original simulation is preserved if needed.
  3. In the newly-created simulation, right-click and select Model Control to open the Model Control dialog.
  4. In the dialog on the General tab, for the Initial Condition drop-down select "Dry".

Every run of SRH-2D creates restart files for the model. Initially, it creates a restart file for every time step as determined by the Output Frequency in the Model Control dialog. However, when the solution is loaded into SMS, the software only saves the restart file for the final time step. If a restart file for a different time step in the simulation is desired, then please complete the following before clicking Load Solution in the Simulation Run Queue dialog:

  1. Browse to where the project is saved.
  2. Double-click on the folder with the same name as the SMS project.
  3. Double-click on the SRH-2D folder.
  4. Double-click on the folder with the same name as the simulation run.
  5. This is where restart files were written for every time step. The file that ends in "_TSO.dat" is a text file with information about which restart files correspond to each time step. Open it in a program that can read plain text files to make sure that you select the restart file with the desired time step. The restart files end in "_RST" followed by the time step number (e.g. "Standard_Run_RST12.dat").
  6. Once you have determined the restart file you want to save, copy and paste it in a different folder on your hard drive.
  7. Then click Load Solution in SMS.

SMS loads the results into SMS and keeps only the restart file for the final time step. It's important to remember that changing anything in the mesh necessitates the creation of a new restart file. Restart files should only be used with a model that uses the exact same mesh as the simulation that generated the restart file. Using the restart file with a slightly modified mesh might yield inaccurate results.

SRH-2 with SMS provides powerful tools for surface-water modeling. Use SMS today!

Blog tags: 

Trimming and Extending Arcs in SMS 13.2 Beta

Do you have arcs in a project that you need to extend or trim to match another arc? For example, you may be modeling a bridge with two arcs to represent the bridge in SMS. If you want to make certain the two arcs are the same length, you will need to extend or trim one of the arcs. A new tool introduced in SMS 13.2 allows you to trim or extend the length of arcs to match the length of another arc. This article will discuss how to trim or extend arcs as well as the advantages of doing so.

To use the Trim/Extend tool, do the following:

  1. Select one arc and, holding down the Shift key, select another arc. It is important to take note of what arc IDs are selected, trimming or extending the wrong ones can cause problems in the model.
  2. Right-click and select the Extend or Trim Arc command to open the Trim/Extend Arc tool.
  3. In the tool, there are two different options: one to select the arc that will be extended or trimmed and another option to select which arc will be used as the base arc for the length.
Example of Trim/Extend Arc in SMS

There are a few ways to differentiate between wether you are extending or trimming an arc. With the extend option, the number of intersections included in the arc selection will indicate to the tool to use the "extend" operation. Whereas with the trim option, if one or more intersections are included in the selection, this indicates a "trim" operation. This will allow a node to be inserted into the first arc at the first intersection and delete the first portion of the newly split arc.

It should be noted that you can only select up to two arcs otherwise the option to trim or extend will not appear. Try trimming or extending arcs in SMS 13.2 beta today!

Blog tags: 

Using the UPW Package for MODLFOW-NWT

Do you have a groundwater model that might benefit from using the UPW package in GMS? The Upstream-Weighting (UPW) package is one of the four available options for flow packages for MODFLOW. It is used for calculating intercell conductances in a different manner than is done in the Block-Centered Flow (BCF), Layer Property Flow (LPF), or Hydrogeologic-Unit Flow (HUF) packages.Rather than the discrete approach of drying and rewetting that is used by the BCF, LPF, and HUF Packages, the UPW package treats nonlinearities of cell drying and rewetting by use of a continuous function of groundwater head.

Example of the UPW Package dialog

In order to use the UPW, you first need to have a MODFLOW-NWT simulation as part of your groundwater model in GMS. Once you have selected the MODFLOW-NWT version, you can use the Packages dialog to activate the UPW package.

The UPW flow package is based on the LPF package but differs in that the rewetting and vertical conductance correction options are not available. Otherwise, the UPW package allows you to work with both confined and convertible layers. It also has options for vertical hydraulic conductivity and interblock transmissivity. Array values can be set for the horizontal hydraulic conductivity, and vertical and horizontal anisotropy using the MODFLOW array editor in GMS.

Additional options are also included here. It is possible to remove vertical leakance correction or set a head value for dry cells. These options are in their own dialog accessible through the main UPW package dialog.

It should be noted that the UPW flow package is only available for use in the MODFLOW-NWT model and is not available with other versions of MODFLOW. The UPW is designed to work with the NWT linearization approach which generates an asymmetric matrix.

If you have a MODFLOW-NWT groundwater model that needs a different approach to calculating conductance, try out the UPW package in GMS today!

Blog tags: 

Curve Number Values for NLCD Land Use Data

Are you wondering what values to use for composite curve numbers used with NLCD land use data in your WMS project? WMS contains a Compute GIS Attributes calculator in the Hydrologic Modeling Module that allows you to import composite curve numbers to use in land use mapping. This can allow you to define boundaries for different soils, rainfall depths, etc. This post will cover some different resources to get the values you need.

Compute GIS Attributes with Imported Curve Data

It is important to be aware that there are two options when using the Computing GIS Attributes calculator: WMS Coverages as well as GIS Layers. With both GIS Layers and WMS Coverages you are given the option of selecting the Soil Layer Name, Drainage coverage computation step, etc. In the GIS Layers you are given the option to view field records and assign a code of your choosing. To use the GIS Layers option, you will need to have already imported GIS data into your project. In order to make the WMS Coverages option active you will need to have created your own land use or soil type coverages within WMS. Using the WMS Coverage option allows you to import your own land use or soil curve numbers from a text file.

What values you use for the text file depends on your own judgment and what would work best for your project. One option to get the table values is to use the example files found on XMS Wiki in the SCS Curve Numbers section. Opening one of these examples will show you an area-weighted average of the different curve numbers for the different regions. Another option is to visit the USGS website, download the example data, and import it into the GIS Attributes dialog. Finally, you can make your own table In which case use your engineering judgment to determine the CN values for your project.

Try out inserting curve number values for NLCD land use data in WMS today!

Blog tags: 

Merging Map Coverages in SMS

Do you have an SMS project that might benefit from merging coverages together? It’s not uncommon to have feature objects on different map coverages in SMS that would be useful to have on one coverage. For example, you might have feature objects from a shapefile on one coverage that you would like to merge with feature objects you have created on another coverage. This post will cover some tips to merge coverages as well as the effects of merging coverages.

To merge map coverages:

  1. Select one coverage in the Project Explorer then hold down the Ctrl key and select another coverage.
  2. Next right-click and the Merge Coverages command will appear.
  3. After clicking the Merge Coverage command, a warning dialog will ask you if you want to keep or delete the coverages being merged.
  4. Upon completion a new merged coverage will appear in the Project Explorer.
Example of Merging Map Coverages in SMS

Merging coverages comes with a lot of benefits when working with a large number of feature objects. When merging coverages here are a few items to keep in mind:

  • When merging coverages of different types, the new merged coverage will be converted to the Area Properties type.
  • When merging coverages of the same type, the new merged coverage will be the same type. For example, if you had two map coverages that are both ADCIRC materials they are going to remain ADCIRC Materials after they have been merged together.
  • When merging, only the feature objects will be merged together–any defined attributes on the feature objects will be reverted to the default setting for that coverage type. For example, the default for SRH-2D boundary conditions coverage type is the wall boundary condition. When two SRH-2D boundary condition coverages are merged all the arcs will be set to have the wall attributes.
  • When only wanting to copy a few feature objects from one coverage to another, use the Copy to Coverage feature instead of merging entire coverages.

These are just a few tips to help with merging coverages in SMS. Try out merging coverages in SMS 13.2 today!

Blog tags: 

Defining UGrids Layer Attributes in GMS

In your groundwater model, do you need to define MODFLOW-USG attributes for a UGrid that vary by layer? For example, you might have multiple polygons that define your recharge zones for your model where the attributes on each polygon are only meant to be applied to specific layers on the UGrid. GMS provides tools for specifying how those attribute definitions get applied to UGrids.

First, you can always apply attributes directly to a UGrid using the grid approach. Doing this has the advantage of having direct control over the attributes assigned to each cell and element on each layer. However, doing this on a large UGrid or for more complex models, this can become tedious and time consuming. Using the conceptual model can aid in managing assigning attributes to layers in more complex models.

For the conceptual model approach, the Coverage Setup allows you to specify the layer range for sources, sinks, boundary conditions, and areal properties. The Layer range option must be turned on in order to specify the layer range for attributes applied to feature objects in the coverage. If Layer range option is not applied then the default layer range will be used when applying attributes on the coverage to the UGrid.

Example of Specified Layer Ranges in the Attribute Table

It should be noted that once you have chosen to assign attributes to specific layers, you will need to pay attention to which attributes are being assigned. It is recommended that you review the assigned MODFLOW attributes. Keep in mind that you cannot mix specified layer ranges with the default layer range. GMS does not give priority to the default layer range over the specified layer ranges and vice versa. For example, if you assign refinement attributes to a polygon to use a specific layer range, but leave other polygons on the same coverage to use the default layer range for refinement, this will likely cause issues in the model run or results.

GMS allows you to be as general or specific as you need when assigning MODFLOW attributes to UGrid layers. Try out defining the layer attributes for UGrids in GMS today!

Blog tags: 

Comparing SRH-2D and HEC-RAS Solutions

Have you ever wanted to compare model results between SRH-2D and HEC-RAS models? The SMS 13.2 interface allows you to view both SRH-2D and 2D HEC-RAS results for the same model at the same time.

Say, for instance, that you have created an SRH-2D simulation in SMS and you want to compare results using HEC-RAS. First, if you do not have the project in both SRH-2D and HEC-RAS, you will need to create an HEC-RAS simulation in SMS and use it to export the SRH-2D mesh into a file format that HEC-RAS can use. Then you can import the mesh into HEC-RAS and set up the boundary conditions and other attributes of the simulation.

Comparing a SRH-2D and HEC_RAS simualtion

Once you have a completed simulation for both SRH-2D and HEC-RAS, you can import the results of the HEC-RAS simulation into the SMS project containing the SRH-2D solution. To do this, simply open the "*.p**.hdf" file generated by HEC-RAS in SMS. This will import the HEC-RAS solution into your SMS project. The HEC-RAS simulation solution will appear on a 2D UGrid.

There are many different comparison options available, a few are listed below:

  • The first comparison is often a quick visual check. Switching between the two models in the Project Explorer will let you make quick visual comparisons. You may need to adjust your contour display options to make this easier.
  • Using the Data Calculator, you can make a comparison dataset. Since the HEC-RAS solution will be on a UGrid and the SHR-2D solution will be attached to a 2D mesh, you may need to convert data to be in the same module in order to do this.
  • Observation Plots are another way to compare the models. You can plot the solutions from both models using the same observation coverage.

Try out comparing SHR-2D and HEC-RAS models in SMS 13.2 today!

Blog tags: 

Exporting Map Coverages in SMS

Do you have a map coverage with specific defined attributes in an SMS project that you would like to add to another project? There is a solution: starting in SMS 13.2 you can export your map coverage as a DMC file that you can import into another project.

For exmaple, say that you have defined a weir structure on an SRH-2D boundary condition coverage for your project. You could, conceivably, have a massive project with many different coverages, meshes, and simulations. If you, or a coworker, would like to use that weir with its defined attributes in another project, recreating the same weir would be inefficient. Instead, exporting just the weir coverage as a DMC file allows you to import the weir coverage with its feature objects and attributes into another project. This will save time for everyone involved in the project, streamlining the process.

There are three steps to export a map DMC:

  1. Right-click on a coverage of your choice in the Project Explorer and select the Export command.
  2. In the Export Coverage dialog, change Save as type to be "SMS model coverage (*.dmc)".
  3. Save the DMC file.
Example of Exporting a Map Coverage as DMC File

The DMC file can now be imported into another project. Importing the DMC file will create a new map coverage in the project with all of the feature objects and attributes that were saved with the file.

It should be noted: Nearly all attributes in the coverage will be exported. The exception to this rule is that external files referenced by the coverage are not embedded in the model coverage file. An example of this would be an external tidal WSE source in a CMS-Flow BC coverage. The attribute would include the link to the file, but if the DMC file is read into a project on a different machine, the external file would not be in the same location, and therefore the association is automatically maintained.

It should also be noted that not all map coverage types can be exported as a DMC file. Certain older map coverage types do not have this option at this time.

Try exporting a DMC file and importing it into an SMS 13.2 project today!

Blog tags: 

Using the MODFLOW 6 Run Queue

Have you noticed that in GMS MODFLOW 6 uses a different model wrapper than other MODFLOW versions? This model wrapper is the SImulation Run Queue and it has a few new options. Since MOFLOW 6 in GMS allows having multiple simulations run, the Simulation Run Queue helps you manage the different simulation runs.

The new Simulation Run Queue dialog functions a little differently from the Model Wrapper dialog. Some of the changes include:

  • You must click Load Solution to load the desired simulation solution into the project. This does not happen automatically when you click close as it does with the MODFLOW model wrapper.
  • If you try to run a simulation already in the queue, you will be prompted to remove the simulation from the run queue before it can be run again.
  • If changing an active simulation’s settings, renaming the active simulation, or taking any action that affects a simulation currently in the queue, you will be asked to remove the simulation from the queue prior to making the changes.
  • The maximum number of concurrent processes allowed can be as many as you want. However, it should be noted that the more complicated the simulations the longer it may take for the processes to complete. Therefore, allowing a large number of processes to run concurrently may slow down processing time if you are running multiple complex simulations.
  • Turning on the Monitoring data will allow you to see the command line run for each process. This can be used to troubleshoot issues that may have occurred during the simulation run. If the simulation encounters an error look to the Command line to see what has caused the error. If there are no errors then your simulation should show 100% in green instead of red (denoting an error).
  • Another important note is that you can still work while the simulation is running. You can move the Simulation Run Queue to the side and continue to work on your project while it runs. Right-clicking on the simulation folder in the Project Explorer provides a command for opening the Simulation Run Queue if you accidentally close it.
Example an error in the MODFLOW 6 simualtion in the Simulation Run Queue

Now that you know a little more about the Simulation Run Queue dialog in GMS 10.6 try it out today!

Blog tags: 

Pages