Aquaveo & Water Resources Engineering News

Using the Import Wizard to Create a Cross Section Database

Do you have a cross section database that needs to be included in your surface water project? A new feature in SMS 13.1.1 beta allows you to import a cross section database using the File Import Wizard.

A cross section database can be imported from a spreadsheet or a specially formatted text file. To import a cross section database from a spreadsheet or text file, use the following steps:

  1. Make certain you have created a 1D hydraulic cross section coverage in your project. This is needed in order to have a place to store the cross section database.
  2. If using a text file, make certain it is formatted correctly. It should include an XS ID or Station ID column in order to define the points found in each cross section.
  3. Open the cross section database file using any of the methods for opening a file. This will bring up the File Import Wizard.
  4. In the first step of the File Import Wizard, set the fixed width or delimited properties as appropriate for the file.
  5. In the second step of the File Import Wizard, set the data type to be "Feature Data" and turn on the "Cross section database" option.
  6. Also in the second step, assign the columns of the text file to make the station ID, and xyz coordinates. There is also an option for a PT type that allows you to annotate features such as thalweg, left bank, right bank, left toe, right toe, abutment, pier, and so on.
  7. When done with the File Import Wizard, clicking Finish will import the database in your SMS project. It can be reviewed by looking at the arc attributes of the cross section arcs.
The File Import Wizard for importing a cross section database

Once you’ve imported the cross section database, the cross section data is stored in the project file. Try out importing a cross section database into your SMS 13.1 projects today?

Blog tags: 

Plotting Conductance for the DRN Package

Are you looking for a way to contour the conductance of drainage areas in your groundwater model? If you have a large regional model containing areas with a dense drainage network (ditches, tile drainage, etc.), you can scale up this to represent a diffused drainage system. When doing this, there are not only single ditches simulated with the drain (DRN) package, but whole areas. Using GMS, you can create a contour of these drainage areas.

Contoured drain area

To create this contour, use the following workflow:

  1. Go to MODFLOW | Optional Packages | DRN to open the Drain (DRN) Package dialog.
  2. Make sure IJK is selected on the bottom in order to have the drains at their XYZ locations.
  3. Click the top left blank grey box to select all or select and drag to select all the data points.
  4. Copy the data and paste in a word processor such as Notepad++ and save the file.
  5. Back in GMS, select Open File and select the new text file. The text wizard should open up and already have delimited the file, but double check to make sure all the values are correct.
  6. Click Next then change the GMS data type to 3D Scatter points.
  7. If your file included elevations, you can make sure those are not mapped into your project by changing the dataset above to "Not Mapped".
  8. Otherwise, make sure your IJK cell values are matched up with their respective XYZ values and your conductance is set as the "Dataset".
  9. You may have to select the projection for this dataset in order for it to line up with your current project.
  10. You can then go to Display Options, select 3D scatter points on the left sidebar, and then turn on Contours if it has not already been turned on. You can check the contour options to see if the setup and coloring is to your liking.

Completing this workflow should cover all the drain points within the MODFLOW project. Try out contouring drainage areas in GMS today!

Blog tags: 

Using Shapefiles for Stream Arcs in WMS

Shapefiles contain valuable data that can be used for modeling in WMS. If you have an existing shapefile that has arcs that define the streams for the area you will be modeling, you can use that shapefile to define the streams in your WMS project. Doing this can save you from manually having to define the stream arcs manually.

Do use a shapefile for stream arcs in WMS, do the following:

  1. Import or download the shapefile into WMS. The file data will appear in the GIS module. Review the arcs to make certain they align with the stream location.
  2. With the shapefile active, use the Mapping | Shapes to Feature Objects command.
  3. In the GIS to Feature Objects Wizard, map the shapefile to the drainage coverage. If you are using another coverage besides the drain coverage make certain to select the correct coverage in the first step of the wizard.
  4. After mapping the arcs to the drainage coverage, use the Select Feature Arc tool to select arcs along each stream.
  5. Right-click and select the Attributes command to open the Attributes dialog for the selected arcs.
  6. Change the attributes of the arcs to be Streams.
Converting the arcs to stream arcs

After creating the stream arcs, it is recommended that you review the streams to make certain the streams going in the right direction. Use the display option to see the stream arc direction and use the Reverse Direction command to change the direction of arcs.

It is also recommended that you carefully review the arcs that were mapped over to the drainage coverage. Delete any unnecessary arcs and clean up the arcs to improve the performance of the model. It is recommended that stream arcs be merged together except in locations where they branch or where a subbasin is meant to start. Merge arcs by changing a node to a vertex.

Shapefiles can help you build your watershed project in WMS quickly Try out creating stream arcs from shapefiles in WMS today!

Blog tags: 

Using the Compute Derivative Tool in SMS

With the release of the SMS 13.1 beta, a new tool has been added to the Dataset Toolbox. The Dataset Toolbox contains many tools for creating new datasets from existing data in your project. The Dataset Toolbox contains the Data Calculator as well as tools for comparing datasets and completing certain functions.

Among all the tools currently available, the Compute Derivative tool has been added to the Temporal tools in the Dataset Toolbox. In a previous blog post we discussed the other temporal tools if you want to review the function of those tools. The Compute Derivative tool allows you to create a new dataset showing the change from one time step to the next, or the derivative from one time step to the next of an existing dataset.

To access and use the Computer Derivative tool, do the following:

  1. Have a transient dataset loaded into the project.
  2. Use the Data | Dataset Toolbox command.
  3. In the Dataset Toolbox dialog, select the Computer Derivative tool under the list of Temporal tools.
  4. Select the desired dataset to use for the computation.
  5. Select either the Change or Derivative option.
  6. If selecting the Derivative option, also specify the time units.
  7. Enter a name for the new dataset.
Compute Derivative Tool in SMS

The new dataset generated from the Computer Derivative tool will output data in between the existing dataset time steps, resulting in one fewer time steps than the original dataset.

The Compute Derivative tool is only available for data that is in the 2D Mesh module or the UGrid module. Make certain that you have your dataset included in one of these two modules. If you have your dataset in a different module, you will need to interpolate it over to a 2D mesh or UGrid (unstructured grid) before using the Computer Derivative tool.

Try out using the Compute Derivative tool in SMS 13.1 today!

Blog tags: 

Troubleshooting Importing Boreholes in GMS

Have you encountered issues when importing borehole data into GMS? The majority of the time, there are no issues when borehole data is imported into GMS, but occasionally something becomes misaligned. This article will attempt to address some of the common issues that occur when importing borehole data.

The most common issue happens when the borehole data file is formatted incorrectly for GMS. Often this can be fixed when importing the borehole through the File Import Wizard. Selecting the correct options in the File Import Wizard can resolve many issues. However, in some cases the borehole data will need to be reformatted using a spreadsheet program or text editor. If this is the case, follow the recommended borehole file format.

Another issue occurs when importing borehole data happens when the coordinate system for the borehole data does not match the coordinate system for the GMS project. When this happens, all of the boreholes will be unaligned with the project data or it may happen that all of the boreholes will be stacked on top of each other. This latter case typically occurs when the borehole coordinates are in latitude and longitude, but the GMS project is using a projected coordinate system, which would use linear units such as feet or meters.

To fix this issue, the correct projection needs to be set for the boreholes. This is done by doing the following:

  1. In the Project Explorer, right-click on the imported boreholes and select the Projection command.
  2. In the Object Projection dialog, set the projection to match the project projection.

With the correct projection set, the boreholes should line up with the project data.

Setting projections for a borehole

Additional adjustments to boreholes can be made using the Borehole Editor. This is accessed by right-clicking on the borehole and selecting the Properties command. This method is best when only a few boreholes are imported incorrectly. If several or all boreholes were imported incorrectly, it is recommended to review the borehole data and fix any issues before importing into GMS.

For further troubleshooting with importing borehole data, contact our technical support team at support@aquaveo.com. Try out using boreholes in GMS today!

Blog tags: 

Using Evaluation Versions of GMS, SMS, and WMS

Are you wanting to try out GMS, SMS, or WMS, but aren’t quite ready to commit to purchasing a license? Or maybe you have a license, but your maintenance has lapsed and you’d like to check out the new features in a beta version before updating your maintenance?

Aquaveo permits using an evaluation license for its products to permit you to try out our software to see if it will meet your needs. Evaluation licenses are temporary license codes that let you use all the functionality of our software for two weeks.

To receive an evaluation license code, do the following:

Use the evaluation code to register
  1. Download the software you want to evaluate from our downloads page.
  2. After downloading and installing the software, use the Request License button in the Registration Wizard to go to the Software Evaluation Request page on our website.
  3. Fill out the request form and an evaluation license code will be sent to you.
  4. Register the software using the evaluation license code sent to you.

After registering the software with the evaluation code you will be able to use all of the software functionality to determine if the software will meet your water modeling needs. Note that evaluation licenses are only for evaluation purposes and are not intended for creating finished models. It should also be noted that certain third party models, such as TUFLOW or Hydro AS-2D, will still require a separate license in order to fully evaluate them.

After the two week trial period, the license will expire and you will no longer be able to use the software until a paid license code is entered. You are only permitted one evaluation license per product per version.

If you encounter problems with registering an evaluation license, contact our support team at support@aquaveo.com. If you started an evaluation license and were unable to use the license during the evaluation period, contact our licensing team at licensing@aquaveo.com.

Blog tags: 

Customizing the Simulation Commands in SMS

In SMS 13.1 beta, did you know that you can customize the commands in the simulation right-click menu? Customizing the right-click commands can help declutter the menu. For models such as ADIRC or SRH-2D, the right-click menu can be customized to show the commands you use most often. For example, if your workflow calls for saving the project, exporting the simulation files, and launching the simulation run every time, you may not want to have separate commands for each of those, instead just having one command showing all of those.

Starting with SMS 13.1.6, the Preferences dialog contains options for customizing the right-click menu commands for simulations. These commands include commands for exporting the simulation files, saving the project, and launching the simulation. Commands preferences can be set for the menu for simulations as well as for the Simulation Data folder in the Project Explorer. Setting the commands for the Simulation Data folder apply to all simulations in the project.

To customize the simulation commands, do the following:

  1. Open the Preferences dialog by using Preferences command in the Edit menu.
  2. In the Preferences dialog, go to the Project Explorer tab.
  3. Click the Edit button next to simulation right-click menu options to open the Simulation Menu Preferences dialog.
  4. Turn on or off the options in the Simulation Menu Preferences dialog to customize the commands in the simulation menus.
Customizing the simulation menu

When using the Simulation Menu Preferences dialog, make certain you turn on or off commands in the correct column. Also note that saving the simulation exports the simulation files and does not include saving your SMS project; there are two separate processes.

Being able to customize your simulation menu is a new feature that is only available for certain models. Older models, such as TABS or TUFLOW, do not have this option at this time.

Try out customizing your simulation menu in SMS 13.1 beta today!

Blog tags: 

Zooming with Annotations

Do you have a location in your GMS groundwater project that requires you to zoom in and out of a particular location frequently? It sometimes can become tedious to constantly have to locate the same area in the project and manually zoom in on that area using the Zoom tool. The annotation tools provide a way to make this process easier.

Zooming using the annotation tools requires the use of the Zoom to Layer command. This is done by doing the following:

  1. Create a new world space annotation layer. It is important that the annotation layer be set to use the world space which makes use of the project projection. Using annotation layers set to screen space will not work.
  2. Create annotations that mark out the zoomed in area. Using the Create Rectangular Object tool often works best for this task. Make certain that all objects added to this annotation layer are within the zoom in area.
  3. In the Project Explorer, right-click on the annotation layer and select Zoom to Layer. This will frame the project to the extent of the annotation objects.
Zoom to Layer command with Annotations layer

Following this method, you can zoom or pan to other locations in the project and quickly return to the area marked by the annotation layer by using the Zoom to Layer command. If there are multiple areas of interest in the project, create a separate annotation layer for each area you want to zoom in on. Doing that can make navigating around the locations of your project easier.

While we discussed doing this in GMS, it can also be done in SMS for surface-water projects. The annotation tools are similar in SMS and the Zoom to Layer is available for annotation layers in the Project Explorer.

Try out using annotations to navigation your groundwater project in GMS today!

Blog tags: 

Reviewing Aquaveo Licensing Information

In order for your Aquaveo software (GMS, SMS, WMS) to function correctly, it must be licensed correctly. It also must have all the correct components licensed for you to run the packages you have purchased. When you encounter an issue with your license, you can review your license information in order to know what to do.

To see your license information, do the following:

  1. Go to the Help menu and select the Register command.
Example of the Register Dialog

In the register dialog you will see your license information, including your license number, license expiration date, and maintenance expiration date. The license number will often be needed when contacting Aquaveo for support. The license expiration date shows when your license will expire, after which you will no longer be able to use the software without a new license. The maintenance expiration date is different from the license expiration date. The maintenance expiration date is the date after which you will no longer be able to receive technical support or access newer versions of the software including bug fixes.

In the register dialog you will also see a list of components enabled with your license. Components include numerical models, interface options, and tools that can be purchased with a license for our software. Review this list to make certain that you have all of the components you expect to find with your license. There is an option at the top of the dialog that can be turned off to see components that have not been enabled.

Often when a component is not enabled, this is because that component was not part of the license package that you purchased. Components can be purchased as part of a license package or purchased individually. To add a component to your license, contact our sales team at: sales@aquaveo.com

If you find that a component is not enabled that you believe should be enabled, contact Aquaveo’s licensing team at: licensing@aquaveo.com

If you are experiencing trouble registering your license or accessing a component of your license, contact our technical support team at: support@aquaveo.com

Blog tags: 

Pages