SMS

Working with ADCIRC Levees in SMS

As a oceanic modeler working with hydrodynamic modeling, you may have an ADCIRC levee structure in your project that you need to check or fix. Fortunately, SMS provides a couple of tools that can assist you with this task. These tools are part of the SMS Toolbox and allow you to test and verify that levees are working properly. In this article, we'll take a closer look at these tools and how they can be used to enhance your surface-water projects.

To access the ADCIRC levee tools, you can open the Toolbox and expand the ADCIRC folder. The first tool available is called Fix Levee Crest Elevations. This tool checks the ADCIRC boundary conditions coverage that contains the levee arcs. It compares the Z crest attributes against a set of elevation lines, which are known as check lines. The tool will perform a check on any selected levee arc or all levee arcs if none of them have been selected previously. If the elevation values are outside of the check lines, the tool will adjust them to fix the values.

Another tool in the toolbox is the Check/Fix Levee Ground Elevations. This tool checks the elevations of an ADCIRC domain based on the crest elevations defined in an ADCIRC boundary conditions coverage. If necessary, the tool will lower the elevations of a domain based on the elevations defined in the boundary condition coverage. This tool also creates a new dataset that can be mapped as an elevation for the 2D mesh if desired.

Example of the Check/Fix Levee Ground Elevations tool

Both of these tools check the validity of the levee. If the levee does not line up with a hole in the mesh, the tool will determine it to be invalid. If the tool determines the levee to be valid, it will run, and the output datasets will be loaded onto the input domain mesh in SMS.

The ADCIRC levee tools are just some of the tools available in the SMS Toolbox. Additional tools will be added in the future to enhance the capabilities of the toolbox. By using the Toolbox for your surface-water projects in SMS, you can easily test and verify the effectiveness of levees and ensure that they are functioning as they should be.

In conclusion, if you need to check or fix an ADCIRC levee structure in your project, SMS provides helpful tools in its toolbox to assist you. These tools, such as Fix Levee Crest Elevations and Check/Fix Levee Ground Elevations, allow you to test and verify the effectiveness of levees, ensuring that they function correctly. So, try out the SMS toolbox today for your surface-water projects, and make your work easier!

Blog tags: 

How to Include Sediment Transport in CMS-Flow

As a civil engineer working with hydrodynamic modeling, you understand the importance of considering sediment transport in many models, such as CMS-Flow. The sediment transport equation is essential as it models the rate of sediment particle movement based on various factors, including local flow conditions and sediment properties. With the sediment transport module in CMS-Flow, you can achieve a more accurate representation of river or coastal systems. It also enables you to explore different scenarios such as changes in flow conditions, sediment input, or sea level rise.

Using the Surface-water Modeling System (SMS), the base of a CMS-Flow model is created on an unstructured grid (UGrid), with components such as save points, activity classification coverage, and boundary conditions. Save points are vital for identifying high temporal resolution output locations. Activity classification coverages exclude geographic regions from the simulation computations. A boundary conditions coverage is a required component for any simulation.

Example of Sediment Transport options for CMS-Flow

Once you have created these components, you can create a new CMS-Flow simulation by right-clicking in the Project Explorer. Next, apply the UGrid and any coverages you want to include in the simulation by dragging them under the simulation. You can then set the parameters for sediment transport by following these steps:

  1. Right-click on the simulation and select Model Control to open the CMS-Flow Model Control dialog.
  2. Select the Sediment Transport tab and check the box next to Calculate sediment transport.
  3. Under the Sediment Transport tab, input various parameters to refine sediment transport in the simulation. These include sediment density and porosity, bed composition, transport formula, and more.
  4. Set all other desired parameters in the tabs of the CMS-Flow Model Control dialog and click OK when finished.

Once you have set all the necessary parameters, you are ready to run the CMS-Flow simulation with its included sediment transport calculations. By utilizing sediment transport, you can refine your CMS-Flow model further and achieve more accurate results.

In conclusion, sediment transport is an essential process that needs to be considered in hydrodynamic models like CMS-Flow. With the sediment transport module in CMS-Flow, you can achieve a more realistic representation of river or coastal systems and explore various scenarios. Follow the steps outlined above to set the sediment transport parameters and refine your CMS-Flow model in SMS today.

Blog tags: 

Methods for Redistributing Vertices

The ability to redistribute vertices along an arc can be essential for any number of projects. The Surface-water Modeling System (SMS) offers a couple of different methods for redistributing vertices. This post will examine two of those methods.

The Redistribute Vertices Dialog

The first way to redistribute vertices is relatively simple. Select an arc, or multiple arcs, and either right-click and select Redistribute Vertices from the menu, or go to the Feature Objects menu and select the Redistribute Vertices command. This will pull up the Redistribute Vertices dialog window. From there you have a few different options as to the method of distribution.

  • Specified spacing: the number of vertices on an arc will be determined by how far apart the vertices should be.
  • Number of segments: how many pieces the arc should be broken up into.
  • Min/max spacing: with min/max spacing, the segments will start at the minimum set length and gradually get longer until the last one is the maximum set length.
  • Source arc: this requires you to choose two arcs. The number of vertices on the target arc will change to match the source arc.
  • Size function: this option requires a data source.
Example of the Redistribute Vertices dialog in SMS

In the Redistribute Vertices dialog you can choose to include a bias with specified spacing and number of segments options. Using a bias means that each segment will be a percentage larger or smaller than the one before it, which depends on whether or not the bias number is less or greater than one. The direction of the bias is determined by the direction in which the arc was created. For example, an arc created top to bottom will have the smallest segment at the top and the largest at the bottom if the bias number is greater than one.

The 2D Mesh Polygon Properties Dialog

Another option available in SMS is to use the 2D Mesh Polygon Properties dialog when redistributing vertices along the arcs of a polygon. This can be used on any polygon that has been created on a coverage. There are three ways to access the 2D Mesh Polygon Properties dialog window, but the simplest option is to double-click on the polygon itself.

Example of redistributing vertices with the 2D Mesh Polygon Properties dialog in SMS

The 2D Mesh Polygon Properties dialog window is primarily used for creating a mesh inside a polygon. However it can still be used to redistribute the vertices along an arc. The benefit of using the 2D Mesh Polygon Properties dialog window rather than Redistribute Vertices is that it offers a preview option so you can see what the polygon will look like with the new vertex distribution without having to open and close the Redistribute Vertices dialog to see the changes. This makes it easy to test out different options right in the same window. The downside of using this dialog window rather than Redistribute Vertices is that it doesn’t offer the same range of redistribution options. The only redistribution options the 2D Mesh Polygon Properties dialog offers for vertices is specified distribution along the arc, with or without a bias. If you’re looking for more specificity, this may not be the right option for your project.

Try the different methods of redistributing vertices in the SMS today!

Blog tags: 

Using the Blend Arcs Tool

Sometimes it may be useful to have a quick way to create an arc that lies between two other arcs. For example, you might need to quickly create a centerline arc between two bank arcs. The Surface-water Modeling System's Blend Arcs tool, which is new to SMS in version 13.2, means that creating a blended arc is only a few clicks away.

There are many applications for the Blended Arc tool in SMS. As mentioned earlier, it can be used to find the centerline of a channel using the bank arcs. It can also be used for a quick way to find the arc in the center of a bridge, culvert, or weir.There are many other potential applications for this tool.

Example of the Blend Arc command

The steps to use the blended arc feature are:

  1. Create two arcs. The arcs can be parallel to each other, or even touching.
  2. After selecting both arcs, right-click in the graphics window and choose Blend Arcs from the menu.

The blended arc is immediately generated. This can only be done with two arcs, however the two arcs you pick don't have to be right next to each other. You can still find the blended point of two arcs that are separated by other features, such as other individual arcs or polygons.

When working around polygons in your project, If a polygon has been created in the space where the blended arc will appear, when the Blend Arcs tool is used, the polygon will retain its original shape despite the fact that there is now an arc splitting it. This could be useful for your project, but if you intend for the new arc to split the polygon into two new shapes, you only need to click the Build Polygons macro one more time and the new polygons will be created with this new division.

Try the new Blend Arcs tool in SMS 13.2 today!

Blog tags: 

Pages