SMS

Reintroducing HEC-RAS 1D in SMS

Earlier versions of SMS allowed modeling HEC-RAS 1D models. HEC-RAS 1D is used for performing water quality analysis. Though once part of SMS, it was removed because it was supported by Aquaveo's Watershed Modeling Software (WMS). However, with the inclusion of HEC-RAS 2D, the interface for HEC-RAS 1D has been restored into SMS 13.1.

Using HEC-RAS 1D in SMS primarily makes use of the 1D hydraulic centerline coverage and the 1D hydraulic cross section coverages. It also makes use of the material coverages, with the added bonus of now being able to use SRH-2D material coverages. Once you have defined the materials, centerline and cross sections in your project, you can switch to the 1D Module. The 1D Module has also been reintroduced in SMS 13.1.

Example of HEC-RAS 1D in SMS

Once in the 1D Module, you can access the HEC-RAS 1D menu where you can find the HEC-RAS 1D materials and model control. SMS allows you to select the material coverage to use for HEC-RAS 1D, and then assign that material coverage to the HEC-RAS 1D model. After you have set up your HEC-RAS 1D model in SMS, you can export a project file to use in HEC-RAS.

With HEC-RAS 1D in SMS, you can take advantage of all the tools offered in SMS to build your HEC-RAS 1D project. This includes tools to extract cross sections and centerlines from imported data or existing projects. SMS's editing tools can also be used to adjust the centerline or cross section before importing the project into HEC-RAS. Furthermore, SMS allows you to use profile plots and the various viewing options to review your cross sectional data. It is recommended that you review your HEC-RAS 1D project in SMS before exporting the project file.

HEC-RAS and SMS together increase your water modeling options. Try out using the reintroduced HEC-RAS 1D in SMS 13.1 today!

Blog tags: 

New Project Explorer Commands for SMS 13.1

With the release of SMS 13.1, you might have noticed a few new commands in the Project Explorer right-click menus. The Project Explorer, or data tree, in SMS contains a list of modules and objects that have either been imported into the project or created in the project. Right-clicking on any of these objects will produce a number of commands to perform specific functions or launch certain tools.

Over the development of SMS, the number and type of commands in the Project Explorer have fluctuated. Changes are made to enhance the use of SMS. With SMS 13.1, new commands can be found when clicking on the Project icon at the top of the Project Explorer.

Project Explorer Right-Click Menu for Projects

In this new right-click menu, you will find several commands that have become common in other Project Explorer right-click menus. These include a New Simulation sub-menu and a Projections command. The Projections command will open the Display Projections dialog to set the projections for the entire project. There is also an Open Project Folder command that will open a file explorer window to show the location of the saved project. A Properties command has been added to see details about the project, and contains a place to make notes about the overall project.

These commands also include collapsing or expanding all of the objects in the project. For the Project menu, this would collapse all of the items so only the Project icon is shown, or expand the data tree to show all objects in the project. There are also commands to toggle off or on all data in the project.

Finally, there is a new command, the Save as CAD command. This command will allow you to save a CAD file that contains CAD data generated from all visible data in the Graphics Window.

The new right-click menu commands give you more options for working with data in the Project Explorer. Try this out in SMS 13.1 today!

Blog tags: 

Tips for Reprojecting Quadtrees

Are you using a mix of projections or coordinate systems in your SMS project? SMS allows for using data with a variety of projections. That said, when using multiple projections, care must be taken in how the data is imported and incorporated into the project. Issues can appear with mixing certain types of projection units, such as meters and arc degrees. Also, there are limitations for reprojecting certain geometries, such as quadtree grids.

If your project contains a quadtree grid, here are tips for getting the projection of the grid to align with your project projections.

Display Projections for a Quadtree
  1. Make certain that the Display Projection has been set before importing any data or creating any coverages or geometries. Doing this will define the units and projection for any created geometries even though your imported data might be different.
  2. Reproject imported data to match the display projection. A warning will appear about a round-off error, but in most cases the round-off error is not going to affect the final project. It is important to reproject the imported data so that it matches the display projection in order to avoid large errors when running the model. Note that an imported quadtree cannot be directly reprojected, and while it can be used to locate values needed for generating a new quadtree, the imported quadtree should be removed instead of reprojected.
  3. Review all of the data to make certain it aligns correctly. If you have a lot of imported data, this is a particularly important step. You can use the Translate to make minor adjustments if needed, but this is not recommended if there is a large misalignment.
  4. Once you have verified that all of the imported data is aligned, then create the quadtree grid using the quadtree generator coverage. Make certain the grid frame is correctly placed over the imported data. Note that when creating a quadtree, SMS will not extrapolate for areas that are missing data. The newly generated grid will use the same projection as the Display Projection.

After you have a quadtree with the correct projection and unit, you can finish building your project. Having your quadtree in the correct projection significantly reduces the chances of encountering an error with your project.

These tips for using projections and quadtrees can be applied to other projects in SMS. Try them out in SMS today!

Blog tags: 

Tips for Mapping Solids to MODFLOW

Making use of solid models can aid in modeling complex stratigraphy for MODFLOW. GMS allows using solid models to add complexity to your MODLOW projects. The solid module is used to model solids which then need to be mapped to the MODFLOW model for the solids to be included in the MODFLOW model run.

Solids to MODFLOW

When adding solids to your MODFLOW project, the additional complexity can cause issues in the model run. To avoid undesirable outcomes, here are some tips for mapping solids to MODLOW:

  1. GMS contains an advanced option called Set Operations. Generally speaking, Set Operations are no longer recommended methods for creating solids in most cases. It is recommended that you use the horizons approach instead.
  2. Using a Raster Catalog can aid generating solids. The Fill/Clip method will help preserve the same distribution of materials while hopefully addressing any gaps or other instabilities preventing a successful Solids to MODFLOW operation.
  3. If the Solids to MODFLOW command is still experiencing issues, the Classify Material Zones command can be used instead to transfer that material data to the grid. The material that gets assigned can be chosen in one of two ways. It will either be the material that covers the center of the cell or the material that covers the majority of the cell, but only one material can be assigned.
  4. Alternatively, the HUF package can also be used to transfer materials as it allows for multiple materials without splitting the grid layers. However, if there are issues mapping Solids to MODFLOW, you may run into similar issues when attempting to map Solids to HUF.

Solids in GMS provide a great way to add complexity to your MODFLOW model. Try out using solids with MODLOW in GMS today!

Blog tags: 

Pages