GMS

Understanding Projections vs. Reproject

Have you ever wondered what the difference between projection and reprojection is? Have you ever needed to convert a projection from one type to another in GMS, SMS, or WMS (collectively known as XMS)? The use of projections in WMS can be confusing, so the following should provide further clarification.

Specifying Projections

Projections can be associated with individual data objects, either in the object data file itself or in an associated *.prj file. If XMS cannot find a projection, the object will be left as "no projection," or, when new objects are created, XMS will assign the display projection to it. You can specify an object's projection by right-clicking on it and selecting Projection. Note that this projection must be the same as the original projection of the data; specifying an incorrect projection will result in data issues.

Reprojecting on the Fly

"Reprojecting on the Fly" occurs when datasets or objects from multiple projections are loaded into a project, where the x and y values would not otherwise overlap (i.e., the data would be displayed in two or more distinct locations). The different projections for these data will be "reprojected on the fly" to match the display projection such that the data objects will line up. Note that this does not change any *.prj files or the projections that are set for each object; it is an automatic function internal to XMS used for display purposes.

Converting a Projection

If you need to convert from one projection to another, this can be done by right-clicking on it and choosing Reproject. To use this command, the data must first have the correct projection specified. After choosing Reproject, the command will prompt the user to select a new projection, the data will be converted to the selected projection. If a *.prj file is associated with the object (such as a TIFF), reprojecting the object will change the *.prj file. Reprojection on the fly is usually sufficient for most applications. Please note that there are some limitations for reprojecting.

Reporject Dialog Example

Once the datasets are referencing their projection correctly, XMS should reproject them on the fly to match your display projection. If you don't have a display projection set, you can do so by selecting the Display menu and choosing Projection. At that point, if you would like to reproject your scatter(s) into the same projection as the display projection, you would be able to do so.

Now that you see the differences between projection vs. reproject try them out in XMS today!

Blog tags: 

Viewing an Aquifer's Water Level

After completing a MODFLOW groundwater model in GMS, have you needed to see the aquifer water level? Viewing the water level can aid in visualizing the saturated thickness of an aquifer. The water level can be viewed by doing the following:

  1. Ensure that the Ortho Mode option is toggled on.
  2. Go to Display | Display Options, choose 3D Grid Data, and go to the MODFLOW tab.
  3. Toggle on the Water Table option, and click OK.
  4. Choose either the Front View or the Side View option, or select a cross section to view the water table level.
Water Table shown in GMS

Additional information about the MODFLOW display options, including the Water Table option, can be found on our wiki.

After viewing the water table, it is possible to save the spatial 2D data for the saturated thickness (water table thickness from the aquifer base).

There isn't a shortcut way to save the 2D water table thickness. However, the desired dataset can be created by converting the head and bottom elevation datasets to 2D datasets, and using the dataset calculator to create a dataset of the difference between the two datasets. The workflow is outlined below.

  1. Right-click on your 3D grid and select Convert To | 2D grid.
  2. Select your Head 3D dataset.
  3. Go to the Grid menu, and select 3D data → 2D data.
  4. Choose the desired option in the Create dataset using dialog box selecting the option that best fits your desired dataset.
  5. Repeat steps 2–3 for the Bottom MODFLOW dataset.
  6. Select the 2D grid and go to Edit | Dataset Calculator.
  7. Create the expression: head dataset minus bottom dataset.
  8. Note: If you would like to create a dataset of all time steps, check the box next to Use all time steps before computing.
  9. Give the new dataset a name in the Result option, and click Compute.
  10. Your new dataset will appear under the 2D grid.

Now that you know how to view and save a water table, try it out in GMS today!

Blog tags: 

Tips for Flow Budget in GMS

In any groundwater model, knowing how much of the groundwater is available for use determines the fate of any project planned for the area. It is often a crucial part of a model to determine an accurate water budget or flow budget. MODFLOW can calculate its own flow budget and can also make use of the ZONEBUDGET program to calculate the water budget for subregions of a model. Knowing how to use both the MODFLOW flow budget and the ZONEBUDGET program greatly enhances the value of models built in GMS.

PZONEBUDGET example

With that in mind, here are some tips for making use of a flow budget and ZONEBUDGET in GMS:

  • If ZONEBUDGET is used to calculate a budget for the entire modeled area, the values for each budget term should match the MODFLOW budget except in situations where there are multiple stresses of the same kind in the same cell (e.g. a pumping well and a recharging well in the same cell).
  • You can confirm your approach by calculating the cumulative volumes for the entire model and seeing if they match the MODFLOW outputs.
  • Computer precision could be a cause of small discrepancies between the budgets produced by ZONEBUDGET and MODFLOW. ZONEBUDGET accumulates budget totals using double precision, and MODFLOW uses single precision. Because of the use of double precision, ZONEBUDGET's output should generally be more accurate than MODFLOW's; however, differences in output are not likely to be significant except for some very large models.
  • You can find the correct cumulative volume of water entering a given zone using the flow rate. This is done by multiplying the rate by the length of the corresponding time step.
  • Rates reported are for the same duration of the matching time step. Time steps stair step, so there the value is the same for the entire time step.

For an overview of ZONEBUDGET in GMS, see our tutorial and try it out in GMS today!

Blog tags: 

Tips for Using Multiple Conceptual Models

Have you ever built a model in GMS that uses multiple conceptual models? Doing this offers a few advantages. However, there are potential pitfalls as well when doing this. We will discuss some of the advantages in using multiple conceptual models and what to watch out for.

A conceptual model may contain one or more map coverages. Each coverage should contain feature objects defining key structures of the groundwater model, such as wells, rivers, or recharge. Everything in the conceptual model can then be mapped over to a grid or MODFLOW model.

Example of multiple conceptual models in the Project Explorer

Beyond using folders under a single conceptual model, one of the main advantages with using multiple conceptual models is for organization. When wanting to make variations on a model, it is helpful to have one base conceptual model and then multiple variant conceptual models. The entire base conceptual model may be duplicated to provide a starting point for other variations, or individual coverages may be duplicated and dragged to other conceptual models. Duplicating the base conceptual model can be particularly helpful if you already have transport species defined for MODFLOW-related models.

For example, you can use one conceptual model for a base steady-state model, then create another conceptual model for a transient predictive model. With this you can map the base conceptual model to MODFLOW and run that model. After you have the base results, you can duplicate the solution datasets to preserve them, adjust Global Options—such as Stress Periods—if needed, and then map the predictive model to the grid to run your second MODFLOW model.

When using multiple conceptual models, there are few items to look out for. These include:

  • When changing the conceptual model, changes are not automatically made to the MODFLOW model or other models being used. The conceptual model must be mapped over to the groundwater model in order for the defined features to be included in the model run.
  • When mapping over the conceptual model, it will overwrite any existing data in the same packages contained in the conceptual model. If you want to update the model with the new conceptual model, this is the correct workflow. However, if the original conceptual model used packages that are no longer used in the new conceptual model, then there could be an error in the model run. Always review your model after mapping to confirm the features mapped as you intended.
  • When using MODFLOW-USG, and you have multiple UGrids, make certain the conceptual model is mapping to the correct UGrid or model. It will map to the active UGrid.

Working with multiple conceptual models can expand your options for your model. Try out the conceptual model and other features of GMS today!

Blog tags: 

Pages