GMS

Performing a Silent Install of XMS

This blog post provides information on older password and hardware lock configurations.
Information on new local and flex codes may be found here.

Are you an IT administrator needing to perform a silent install of GMS, SMS, or WMS in a classroom or office? Some classrooms and offices have multiple students or employees changing machines regularly. Non-administrator users are often unable to change the licensing password, lock, or server when these license settings are stored in the global area of the registry. Because of this, we changed the license settings so they are now stored in the user area of the registry. This means that each user account requires this to be setup.

This silent install (or quiet install) workaround requires each user to have the rights to modify the registry. If registry access is restricted, a network administrator can do this by opening the Group Policy Management Editor and creating a startup script that automatically runs the batch file whenever the computer is restarted.

Note: Editing the Registry in Windows is a very advanced administration step. Please always create a backup of the Registry before making changes.

It can be a burden have to manually update the network lock server address in HKEY_CURRENT_USER for each user on each computer. The silent install process is simplified by creating a Windows Registry file that contains the license information and a batch file that can be executed to insert the registry information and launch WMS. The batch file automatically updates the registry for the user and then opens the WMS application. This is the safest way to edit the registry key, as well. The batch file can then be placed on each computer that needs to be updated, and the individual users can execute it as needed.

This workaround uses WMS as an example. This information also applies to GMS and SMS. You can see an example of a registry file in step 1 and the batch file in step 2, below.

  1. Create a file, “Netenble.001.reg”, as follows, replacing "license" with the name or IP address of the network lock server. For example, if the network lock server was at 127.0.0.27, you would use “127.0.0.27”:
    Windows Registry Editor Version 5.00M
    [HKEY_CURRENT_USER\Software\EMRL\WMS]
    "Netenble.001"="license"

    Note: This information was created using Windows 7. Because different Windows versions can have different REG file formats, we recommend you install WMS on one machine, register it to the correct network lock server, then export the [HKEY_CURRENT_USER\Software\EMRL\WMS] registry key. Open the registry file in the text editor and remove every line except those similar to those shown in the image above, and save the file as “Netenble.001.reg”.
  2. Create a file, “wms11.bat”, that will update the registry and start WMS: reg import Netenble.001.reg
    wms.exe
  3. Place these two files in the WMS folder in the image that will be distributed to the affected computers. For example, for the 64-bit version of WMS 11.0, the default location for the folder is “C:\Program Files\WMS 11.0 64-bit\”.
  4. Create a desktop shortcut to the batch file for the convenience of the user. If doing this via a startup script in the Group Policy Management Editor, this step can be skipped.

This silent install workaround can save you significant time as a network administrator. Try it out today!

GMS Training in Hannover, Germany

The German Federal Institute for Geosciences and Natural Resources (Bundesanstalt für Geowissenschaften und Rohstoffe, or BGR) hosted a GMS training class in Hannover, Germany from July 31 to August 3, 2018. It was taught by Todd Wood, an Aquaveo consultant, and attended by employees of BGR and the Jordanian Ministry of Water and Irrigation (MWI).

The first day of the four-day training included instruction on the basics of using GMS, including conceptual model development, defining boundary conditions, and the differences between 2D and 3D modeling. Discussion of MODFLOW and its many packages took up the majority of the first day.

The second day’s training focused on working with regional MODFLOW models (including base maps, conceptual models, and conductance), 2D geostatistics with MODFLOW layer elevations, and interpolation methods. The third day of training covered characterization using borehole data, user-defined cross-sections and horizons, as well as an introduction to model calibration.

The final day of training included automated calibration tools in GMS, including the use of PEST and transient modeling. The day ended with an open lab where participants could work on their own projects with Todd being available to answer questions and help.

We appreciate Falk Lindenmaier and Mark Gropius for arranging the training session for BGR and MWI, and thank you to all of those who attended the training. We love meeting new people and helping them to use GMS more effectively!

While in Hannover, Todd was able to see some of the sights with those attending the training. They visited the municipal forest known as Eilenriede, the Herrenhausen Gardens, Georgengarten, the Maschsee (an artificial lake), and the New Town Hall. Hannover has some truly beautiful locations.

To arrange your own GMS training session, please see the Aquaveo website.

Blog tags: 

4 New Features in the GMS 10.4 Beta

We’re happy to announce the beta version of GMS 10.4 is now available. Our developers have been working hard to improve GMS to make the user experience more enjoyable.

To help you learn about some of the new features, we’ve compiled this list of four new features in GMS 10.4 Beta.

  1. New tools to support the use of lidar data. You might have used lidar files in the past and noticed that the interface was a little confusing and sometimes slow. After examining how the process could be improved, we made improvements to the import process and changed how GMS interacts with lidar data. We hope you find our new lidar functionality is both faster and makes working with lidar data easier.
  2. MODFLOW-USG Transport can now be used with GMS. This version of MODFLOW allows including transport modeling into your projects. With it comes the Block Centered Transport (BCT) process, Dual Porosity Transport (DPT) package, and Prescribed Concentration Boundary (PCB) package. Other options are also included in the MODFLOW-USG Transport model to give a wide range of access.
  3. Head observations for Connected Linear Network (CLN) wells can now be created to measure the computed head in a CLN node or cell. The process is similar to creating head observations in the groundwater domain with some differences. Overall, CLN observations are simple to create and provide a great addition to the CLN process.
  4. You can now export your MODFLOW project for use with MODFLOW 6. This is done similar to saving native text files.

These are only some of the many new and updated features in GMS 10.4 Beta. You can find a bigger list of them here. Along with these new features, we are also excited to offer new tutorials instructing users on how to best utilize the new features. There are specifically tutorials on the new features listed above. Try out the beta by downloading it today!

Blog tags: 

Creating a Raster from MODFLOW Contours

You’ve just finished successfully running a MODFLOW simulation in GMS and you are viewing the results in lovely contours on your screen. Now you would like to save those results as a raster file you can import into another application.

In order to save the MODFLOW contours as a raster, the MODFLOW results will first need to be converted to a scatter point set, then the scatter point set can be made into a raster.

Converting MODFLOW Layers to Scatter Points

To convert MODFLOW data to scatter point data, do the following:

  1. Select the MODFLOW simulation.
  2. Use the Grid | MODFLOW Layers → Scatter Points menu command.
  3. In the MODFLOW Layers → Scatter Points dialog, you can select the Computed Heads option.
  4. With the Computed Heads option active, you can select the MODFLOW solution datasets and time steps to convert into a scatter point.

Once done, you will have a scatter point set in the Project Explorer containing dataset generated from your MODFLOW results.

Converting Scatter Points to Rasters

Now that you have your MODFLOW solution datasets as scatter point data, you can do the following to convert them into a raster file.

  1. In the Project Explorer under the scatter point set, select the dataset created from the MODFLOW solutions.
  2. Right-click on the scatter point set in the Project Explorer, and select Convert To | New Raster.
  3. In the Scatter → Raster dialog, set the interpolation option you wish to use and specify the extents of the raster.
  4. Finally, save your raster file with a name and raster file type.

The raster file will be loaded into GMS, so you can compare it to the contours in your MODFLOW solution datasets. The raster file contains elevation data that was in the MODLOW solution.

Now that you know how to generate a raster file from MODFLOW contours, try it in out in GMS today!

Blog tags: 

Pages