CE EN 547 – BRIGHAM YOUNG UNIVERSITY

Model Calibration

1

Lecture Objectives

- Understand the role that calibration plays in the modeling process
- Be familiar with both manual and automated approaches to model calibration
- Understand the various error norms used to to quantify calibration
- Understand the concept of model uniqueness

Calibration

- Solution is computed by model
- Simulated heads and flows are compared to field observed values
- Input parameters (K, recharge, etc.) Are adjusted until model outputs match field observations

3

Types of Calibration

- Trial and error
 - Manually tweak inputs and re-run model
- Automated parameter estimation
 - Optimization utility is used to adjust input parameters in a systematic fashion
 - PEST, UCODE

Δ

When is a model "calibrated"?

- We should not expect a perfect fit between simulated and observed values due to:
 - Measurement error
 - Simplifying assumptions
 - Uncertainty in inputs (river stages, estimated pumping rates, etc.
- We generally try to get the simulated values within a certain "window" of the field observations:

5

Calibration Error Norms

Mean Error

$$ME = \frac{1}{n} \sum_{i=1}^{n} (h_o - h_c)_i$$

Mean Absolute Error

MAE=
$$\frac{1}{n} \sum_{i=1}^{n} |(h_o - h_c)|_i$$

Root Mean Squared Error

RMS=
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (h_o - h_c)_i^2$$

Each error norm
provides a
numerical measure
of how well the
model is calibrated

Error Norms, cont.

Weighted errors:

$$ME = \frac{1}{n} \sum_{i=1}^{n} w_{i} (h_{o} - h_{c})_{i}$$

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} w_{i} (h_{o} - h_{c})^{2}_{i}}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |w_{i} (h_{o} - h_{c})|_{i}$$

where:

 $w_i = observation weight = \frac{1}{\sigma_i^2}$

 σ_i = standard deviation

Standard deviation can be derived from interval and confidence

7

Error Norms, cont.

Sum of Squared Weighted Residuals:

Error=
$$\sum_{i=1}^{n_h} w_i (h_o - h_c)_i^2 + \sum_{i=1}^{n_f} w_j (f_o - f_c)_j^2$$

where:

n_h = number of head observations

n_f = number of flow observations

 f_c = computed flow

f_o = observed flow

Observation Points

- Primarily used for head values observed in monitoring wells
- Points are contained in an "Observation Coverage" in the Map module

Importing Calibration Points

- Can be entered/organized in spreadsheet
- Import options
 - Save to *.txt file and open using Text Import Wizard
 - Cut and paste directly to Properties dialog

	Α	В	С	D	Е	F	G	Н	T.
1	ID	Name	X	Y	Z	Layer	Head	Interval	Conf.
2	1	Point #1	2899.8	9541.8	876.3	1	310.62	1.5	0.95
3	2	Point #2	4468.7	9965.1	877.2	1	304.8	1.5	0.95
4	3	Point #3	5864.0	8279.6	850.1	2	316.53	2	0.95
5	4	Point #4	7595.3	7530.1	901.7	1	334.67	1.5	0.95
6	5	Point #5	4029.5	6987.5	872.1	1	308.61	1.5	0.95
7	6	Point #6	7056.6	4838.0	903.4	1	327.05	2	0.95
8	7	Point #7	1215.2	5385.0	885.9	1	327.66	2	0.95
9	8	Point #8	3512.4	4378.6	845.2	2	316.99	3	0.95
10	9	Point #9	3751.8	1191.5	883.1	1	329.18	3	0.95
11	10	Point #10	5864.0	2051.9	892.7	1	316.38	2	0.95
12									

Required. All other columns are optional.

13

Calibration Targets Observed + Interval Computed Value Calibration Target Observed - Interval Observed - Interval

Flow Observations

- Represents
 - Gain/loss in streams
 - Gain/loss in reservoirs and lakes
- If flow observations are not included, the solution may be non-unique

17

Model Uniqueness

Consider a model of a basin where the only input is recharge. Water leaves system through stream and spec. head boundary. Main parameters are recharge and K.

Model Uniqueness

- Calibration is achieved by adjusting parameters so that the water table raises or lowers until it fits the head observations
- In order to lower water table:
 - Increase K (water leaves system more rapidly)
 - Reduce Recharge (less water entering system)
- In order to raise water table:
 - Decrease K (causes water to mound)
 - Increase Recharge (causes water to mound)

19

Model Uniqueness

- Looking at head observations only, calibration can be achieved via:
 - Low K, low recharge
 - High K, high recharge
- Theoretically, there are an infinite number of combinations of recharge/K that will "calibrate" the model

Model Uniqueness

- If we include a flow observation for the stream, we eliminate one unknown/degree of freedom from the system since the recharge then becomes fixed.
 The only remaining unknown is then the hydraulic
- The only remaining unknown is then the hydraulic conductivity (K) and the number of combinations of parameters resulting in "calibration" is drastically reduced

21

Comprehensive Error Summary

- Right-click on solution folder in Project Explorer window
- Select Properties

